Nanostructured copper interfaces for enhanced boiling.

نویسندگان

  • Chen Li
  • Zuankai Wang
  • Pei-I Wang
  • Yoav Peles
  • Nikhil Koratkar
  • G P Peterson
چکیده

Phase change through boiling is used in a variety of heat-transfer and chemical reaction applications. The state of the art in nucleate boiling has focused on increasing the density of bubble nucleation using porous structures and microchannels with characteristic sizes of tens of micrometers. Traditionally, it is thought that nanoscale surfaces will not improve boiling heat transfer, since the bubble nucleation process is not expected to be enhanced by such small cavities. In the experiments reported here, we observed unexpected enhancements in boiling performance for a nanostructured copper (Cu) surface formed by the deposition of Cu nanorods on a Cu substrate. Moreover, we observed striking differences in the dynamics of bubble nucleation and release from the Cu nanorods, including smaller bubble diameters, higher bubble release frequencies, and an approximately 30-fold increase in the density of active bubble nucleation sites. It appears that the ability of the Cu surface with nanorods to generate stable nucleation of bubbles at low superheated temperatures results from a synergistic coupling effect between the nanoscale gas cavities (or nanobubbles) formed within the nanorod interstices and micrometer-scale defects (voids) that form on the film surface during nanorod deposition. For such a coupled system, the interconnected nanoscale gas cavities stabilize (or feed) bubble nucleation at the microscale defect sites. This is distinct from conventional-scale boiling surfaces, since for the nanostructured surface the bubble nucleation stability is provided by features with orders-of-magnitude smaller scales than the cavity-mouth openings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal functionalization of carbon nanotubes for enhanced sintered powder wicks

Phase change cooling schemes involving passive heat spreading devices, such as heat pipes and vapor chambers, are widely adopted for thermal management of high heat-flux technologies. In this study, carbon nanotubes (CNTs) are fabricated on a 200 lm thick sintered copper powder wick layer using microwave plasma enhanced chemical vapor deposition technique. A physical vapor deposition process is...

متن کامل

Pool Boiling Performance Comparison of Smooth and Sintered Copper Surfaces with and without Carbon Nanotubes

Pool boiling heat transfer is measured with two individual working fluids on copper surfaces enhanced with sintered copper powder and carbon nanotubes. The working fluids are a segregated hydrofluoroether, HFE-7300, and deionized water. The surfaces considered in the experiments include smooth copper, copper with sintered copper particles, smooth copper with copper-coated carbon nanotubes (CNT)...

متن کامل

A Free-Particles-Based Technique for Boiling Heat Transfer Enhancement in a Wetting Liquid

An easy-to-implement technique for pool boiling heat transfer enhancement is proposed and evaluated through an experimental investigation. This free-particle technique brings about nucleate boiling at a low degree of superheat by means of metal particles that are not fixed to the heated surface, but rather are free to move with respect to the surface. The effects of copper particles with sizes ...

متن کامل

Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films.

A detailed study of metal-enhanced fluorescence (MEF) from fluorophores in the blue-to- red spectral region placed in close proximity to thermally evaporated zinc nanostructured films is reported. The zinc nanostructured films were deposited onto glass microscope slides as individual particles and were 1-10 nm in height and 20-100 nm in width, as characterized by Atomic Force Microscopy. The su...

متن کامل

Size dependence of rate-controlling deformation mechanisms in nanotwinned copper

Nanotwinned metals exhibit an unusual combination of ultrahigh strength, considerable ductility and enhanced rate sensitivity. We find that a Hall–Petch-type relationship closely fits the experiment data of activation volume as a function of twin spacing. The results suggest a transition of the rate-controlling mechanism from intra-twinto twin-boundary-mediated processes with decreasing twin la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 4 8  شماره 

صفحات  -

تاریخ انتشار 2008